If it's not what You are looking for type in the equation solver your own equation and let us solve it.
27x^2+75x+20=0
a = 27; b = 75; c = +20;
Δ = b2-4ac
Δ = 752-4·27·20
Δ = 3465
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3465}=\sqrt{9*385}=\sqrt{9}*\sqrt{385}=3\sqrt{385}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(75)-3\sqrt{385}}{2*27}=\frac{-75-3\sqrt{385}}{54} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(75)+3\sqrt{385}}{2*27}=\frac{-75+3\sqrt{385}}{54} $
| -21=3(x-9) | | 2/3(1x+8)=8 | | m-5.9-0.7=-5.2+1.7m | | 12/20n=-30/44 | | 15(-4/5)=y | | 16+2(x+2)=0 | | .06(2x+6.50)=16.45 | | (2x-24)=98 | | -35=3-8x | | 50/3=5,280/x | | X+3=-x+63 | | -x+6.1=-0.5x+3.1 | | 7.3q=11+2q | | −7x−5= −4x−29 | | x3-5=12 | | .60(2x+6.50)=1643 | | W=40w-5 | | 6(m-10)=3(3m+5) | | 6.8q=8.7q | | (2x-24)+82=180 | | 3x+36=16 | | 3x+3=-93 | | 7(3x1)-(x+5)=-52 | | 7x(2x+5)-5x(2x+3)=(2x+4)23 | | x+7+x+7+2x-1+2x-1=42 | | 8p-10=10p-18 | | .75+(4/y)=(-y/8) | | .35x=500 | | 2/3(1x/1+8/1)=8 | | 55n+700=100 | | 6x+3x-8=0 | | 5(2x+4)+10x=13 |